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Abstract

In cache based multiprocessors a protocol must
maintain coherence among replicated copies of shared
writable data. In delayed consistency protocols the effect of
out-going and in-coming invalidations or updates are
delayed. Delayed coherence can reduce processor blocking
time as well as the effects of false sharing. In this paper, we
introduce several implementations of delayed consistency
for cache-based systems in the framework of a weakly-
ordered consistency model. A performance comparison of
the delayed protocols with the corresponding On-the-Fly
(non-delayed) consistency protocol is made, through
execution-driven simulations of four parallel algorithms.
The results show that, for parallel programs in which false
sharing is a problem, significant reductions in the data miss
rate of parallel programs can be obtained with just a small
increase in the cost and complexity of the cache system.

1.0 Introduction

The design of shared memory multiprocessors that
can scale up to large number of processors is a current topic
of active research. It has been argued that technological
constraints will ultimately put a limit on the processing rate
of uniprocessors. Therefore, future systems will need to
incorporate some form of parallelism. The shared-memory
model appears at this point in time to be the choice parallel
architecture for general-purpose computing.

These systems must efficiently support parallel
multithreaded applications, as well as single thread
processes, for three reasons. First, users need to run
programs on a single processor. Second, some applications
have very limited parallelism. Third, serial bottlenecks in the
code set an upper limit on achievable speedups for large
number of processors [3]; it is therefore critical that single
threads run at peak efficiency.

There are two major problems in shared memory
multiprocessors: shared memory bandwidth and shared-
memory access latency. Both problems can be addressed by
private caches associated with each processor [24]. Most
processor accesses are satisfied by the cache, at processor
speed. However, coherence must be maintained among
caches. Every time a miss occurs in a cache or every time a
processor needs to modify a cache block present in several
caches, the cache controller must access the global memory
through an interconnection. During each such access, the
processor and the cache are usually blocked. The time during
which the processor is blocked will be referred to as a
penalty. Penalties can be very high, especially for fast
uniprocessors in large-scale multiprocessor configurations.
The miss penalty in current systems is of the order of 10 to
20 processor cycles. In the future we can expect miss
penalties in excess of 100 cycles [17]. Therefore, there is a
need to reduce these penalties.

In some parallel programs a large fraction of the
misses are caused by false sharing. False sharing is the
sharing of cache blocks without actual sharing of data. It
occurs because cache blocks contain more than one data
item. False sharing results in non-optimum protocols. In the
case of a write-invalidate protocol, such as the Illinois
protocol [19], more invalidations are sent than strictly
needed by the parallel application and its data-sharing
requirements. Invalidations create traffic and delays in the
processor issuing them; moreover they increase the miss
rate, because an invalidated block must be reloaded if it is
accessed again. The situation is similar in write-broadcast
protocols, such as the Firefly protocol [27]. In these
protocols sharing is detected dynamically and multiple
copies of the same block can be modified at the same time by
different processors, provided modifications are broadcast to
all processors with a copy. The update traffic should be
limited to data elements that are actually shared; however,
because of false sharing, a lot of redundant updates
corresponding to different data elements in the same block
are propagated.

To reduce the effects of penalties and of false sharing
we propose to delay consistency, under a weakly ordered
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model [2] called release consistency [15]. In general, in a
cache-based system, a Store may cause an invalidation
(write-invalidate protocol) or updates to other caches (write-
broadcast protocol). To keep this discussion general, we will
refer to both as coherence updates. In present systems, when
a coherence update must be sent, the cache controller is
blocked while the update signals propagate and are
acknowledged. If these update signals are buffered so that
the cache is not blocked during the propagation of the
signals, we say that coherence is send delayed. Note that this
buffering is different from the usual Store buffer needed in
systems with write-through caches (see Figure 1). Coherence
can also be receive delayed. Namely, if a coherence update
signal reaches a cache, the effect of the update can be
temporarily buffered.

Figure 1: System structure with Store buffers and
coherence update buffers

By delaying the sending of updates, update
propagation can be overlapped with cache activity. In the
protocol that we will describe, a processor or a cache never
blocks on a Store hit, even if it hits on a non-unique, non-
exclusive copy. Moreover, in a proposed variant of the
protocol, the processor cache never blocks on a Store miss as
well. Therefore, latency of Stores should be reduced. Also,
the delaying of update propagation allows multiple processors
to have dirty copies, and increases the concurrency of accesses
to shared modifiable blocks.

The major contributions of this paper are the
specifications of two delayed protocols derived from Censier
and Feautrier’s directory scheme [8], the hardware
implementation details of both protocols, as well as
simulation results showing the reduction in false sharing
misses. In the following, we first present some background
and the false sharing problem. In Section 4.0 we describe the
protocols and their implementation. Performance results
derived using execution-driven simulations are shown in
Section 5.0, followed by some concluding remarks. Readers
who are not familiar with the multicache consistency problem
should consult survey papers [24] before proceeding.
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2.0 False Sharing

In parallel applications, shared data structures are
partitioned statically or dynamically and different processes
work on different partitions of the structures. In general,
partition boundaries do not coincide with cache block
boundaries. As a result, cache blocks are shared while no
data is actually shared. This gives rise to false sharing
transitions [26], which create coherence or miss activity
which would not happen if each cache block contained a
single data item.

To demonstrate occurrences of false sharing we will
show two simple examples. The first example is an
algorithm with static partitioning of the data, the S.O.R.
iterative algorithm to solve Poisson’s equation on a square
domain [28]. In this algorithm, an array (grid) of iterate
components is updated iteratively by a linear combination of
the iterate and its four neighbors in the 2-D grid. In the
example of Figure 2.a, the grid has been partitioned among
four processors. There are private iterate components and
shared iterate components, as indicated in the Figure. In a
shared memory organized as a linear address space, the array
will be stored row-wise or column-wise. Assume that it is
stored row-wise (i.e., first row 1, then row 2, and so on), and
assume that the row size is not a multiple of the block size.
Then false sharing occurs for blocks such as block 2. False
sharing (and true sharing) occurs also for blocks such as
block 1.

The second example, in Figure 2.b, is an algorithm
with dynamic partitioning of the shared data structure, the
dynamic quicksort algorithm [22]. In this algorithm, a
processor acquires exclusive access to a subfile, estimates a
“pivot” element, and splits the subfile in two around the
pivot. False sharing occurs at the boundaries between
adjacent subfiles. The boundary between two subfiles cannot
be predicted at compile time.

Figure 2: Illustration of false sharing in the S.O.R. (a)
and Quicksort (b) algorithms

Because of false sharing a block may “ping-pong”
several times between two processors, even if they reference
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different data elements in the block. For a given number of
processors, the effect of the block size is very similar to the
effect of the block size in uniprocessor systems, but for
different reasons. As the block size increases, the miss rate
curve first decreases because of spatial locality, then the trend
is reversed and the miss rate increases for larger block sizes.
This behavior is observed even in caches of infinite sizes and
is due to the increase in false sharing, which quickly offsets
the gains due to spatial locality.

Figure 3: Total number of misses for S.O.R (a) and
quicksort (b) algorithms.

These effects are clear from the curves of Figure 3,
which show the effect of false sharing on the total number of
misses for executions of the S.O.R. algorithm (Figure 3.a)
and the quicksort (Figure 3.b). The results in these Figures
were obtained through execution-driven simulations [9]. In
these simulations, all caches have infinite sizes and each
simulated processor executes in turn until it accesses a
shared data or executes a synchronization primitive; at that
point, the simulator simulates a different processor. This is
done in a round-robin fashion. In Figure 3.a we have plotted
the total number of shared-data misses for the S.O.R.
algorithm with four processors, a grid size of 128x128 and
100 iterations (the data structure size corresponding to this
grid is actually 130x130 because of boundary conditions).
Two curves are shown: in one curve, it is assumed that all
processors are working at the same speed and start each
iteration at the same time (best case - plain line); in this case

the effect of false sharing as the block size increases is small.
In the second curve (worst case - dotted line), processor 2 is
slightly slower so that it reaches a block such as block 2 (i.e.,
a block at the end of a row) at the same time as processor 1
(and similarly for processors 3 and 4); here the effect of false
sharing is maximum. Whether the best or the worst case
happens in an actual implementation depends on the relative
speed of the processors and on the order in which the
processors reach and execute the barrier synchronization.

The plots for the quicksort are shown in Figure 3.b;
the number of processors is varied from 2 to 32 and the file
to sort is made of 32K random integers drawn from a
uniform distribution; each point is the average of the number
of misses for 10 independent files. For 32 processors, the
miss rate curve bottoms out for block sizes of 8x4=32 bytes.

In a system where we want to support efficiently both
single and multiple thread programs, we are left with a
dilemma. Namely, single thread programs benefit from bigger
block sizes, while bigger blocks are detrimental to the
performance of parallel threads.

3.0 Prior Related Work

In the IBM 3033, a multiprocessor with write-
through caches, a mechanism called the BIAS filter was
implemented [6]. In this buffer, invalidations with the same
block address and coming from other processors are filtered
before they reach the cache, in order to reduce the number of
cache cycles needed by invalidations. In [11], buffering of
memory accesses at both the sending and the receiving
processors was studied in the context of sequential
consistency [14] and weakly ordered protocols. For
sequential consistency to hold it was required that buffered
received invalidations have higher priority than accesses
from local processors.

In [20], the notion of isolated caches was introduced,
and it was informally shown that received and buffered
invalidations may have lower priority than local processor
accesses, in the context of sequential consistency. In [1], a
theoretical model called lazy caching is developed, and it is
proved that consistency can be send delayed and receive
delayed in sequentially consistent systems. In this scheme,
the sending of a coherence update can be delayed until the
next Read (hit or miss) in the local processor. Moreover, the
receiving of a coherence update in a cache may be delayed
until the next miss in that cache. These conditions are very
restrictive, especially for the sending of updates.

Under weak ordering [2][11], protocols can be
delayed further, and Distributed Shared Memory system
proposals try to take advantage of this. In Munin, a
distributed shared memory system under development at
Rice University [4], delayed consistency is advocated at the
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software level. Namely, updates by a thread of replicated
objects are delayed until such a time that they can be detected
by another thread, under a weakly-ordered model of
consistency called loose coherence. A delayed update queue
is maintained for each object and updates on an object are
propagated at synchronizations. In [7], a delayed consistency
protocol implemented on pages at the software level is
outlined. In these papers delayed consistency is linked to the
problem of false sharing for the first time.

4.0 Delayed Protocols

In a system with delayed consistency, synchronization
variables must be stored in different regions of shared
memory than other shared data. Accesses to the region of
memory reserved for synchronization variables are not
subject to delays, so that an On-the-Fly protocol is enforced
on these variables. Therefore, the processor must have the
ability to distinguish between synchronization variables and
other variables. This is usually easy to do.

In the following we specify three protocols. The
specification of each protocol is in three parts. The first part
is a specification of block states in the caches and the system
directory. The second part is a description of transactions
between caches and memory to implement the protocol. The
third part is the algorithm for the control of the cache.

4.1 On-the-Fly Protocol

This is the non-delayed protocol. Coherence actions
are taken immediately and, during their propagation, the
cache controller does not accept any request from the
processor. This protocol was first introduced by Censier and
Feautrier [8]. We reproduce the specification of this protocol
for future reference in the paper.

Block states

(a) Cache states.

If a cache block is Valid, then the cache may be an
Owner (i.e. the copy is unique in the system and it is dirty)
or a Keeper (i.e. there may be copies in other caches and all
copies are clean).

(b) System Directory states.

There is one Modified bit and P Presence bits (one
per processor) per block in memory. A Presence bit is set
only if the corresponding cache is an Owner or a Keeper of
the block. If a cache is the Owner of the block (in which case
only one P bit is set), then the Modified bit is also set.

Memory commands

(a) Issued by a memory controller to the caches.

•  Inv (Invalidate): the receiving cache is either a
Keeper (the cache controller must invalidate its copy of the
block), or the Owner (the cache controller must invalidate its
copy of the block and send it to memory).

•  UpdM (Update Memory): the receiving cache must
be an Owner. The copy of the block is sent to memory and
the cache becomes a Keeper of the block.

(b) Issued by a cache to the memory controller.

•  ReqO (Request Ownership): the memory controller
sends an Inv command to all caches with a copy and the
requesting cache becomes the Owner.

•  ReqOC (Request Owner Copy): same as ReqO, but
the memory copy of the block is also sent to the requesting
cache.

•  ReqKC (Request Keeper Copy): if there is an
Owner, the memory controller sends an UpdM command to
the Owner. The memory copy of the block is then sent to the
requesting cache (which becomes a Keeper).

•  WB: the block is written back to memory.

Figure 4: Cache states transition diagram for the
On-the-Fly protocol

Cache algorithm

For the various types of cache accesses, the cache controller
takes the following actions (Figure 4).

•  Read hit: no action is taken.
•  Write hit: if the cache is Keeper, a ReqO command

is sent to the memory controller, otherwise no action is taken.
•  Read miss: a ReqKC command is sent to the

memory controller.
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•  Write miss: a ReqOC command is sent to the
memory controller.

•  Replacement: if the cache is the Owner, a WB
command is issued to memory.

4.2 Receive Delayed Protocol

When an Inv signal is received by a cache, the
invalidation does not need to reach the cache until the next
Lock instruction executed by the local processor. The
behavior is still correct because the programming model in
weakly-ordered systems forbids accesses to a shared writable
data outside a critical or semi-critical section. Therefore,
between the times when the Inv is received and the next Lock
instruction is executed in the local processor, any Read to the
block must be for a different word or byte in the block than
the one modified. We say that the block copy is Stale. Right
after the processor acquires a Lock, all the Stale blocks in the
cache must be invalidated; otherwise, Stale blocks are treated
the same way as Fresh (non-Stale) blocks in the cache, and
the protocol is very similar to the above On-the-Fly protocol.

Block states

(a) Cache states.

As for the On-the-Fly protocol, a cache may be a
Keeper or the Owner of a block. However, in addition, a
Valid block may also be Stale (i.e. Valid locally but Invalid
in the system directory).

(b) System Directory states.

Same as for the On-the-Fly protocol.

Memory commands

(a) Issued by a memory controller to the caches.

The commands are Inv and UpdM as in the On-the-
Fly protocol. However, the cached copy becomes Stale
instead of Invalid when an Inv command is received by a
cache.

(b) Issued by a cache to the memory controller.

The commands are ReqO, ReqOC, ReqKC, and WB
as in the On-the-Fly protocol. The only difference is that the
memory controller sends Inv and UpdM commands only to
copies that are Fresh (non-Stale).

Cache algorithm

Similar to the On-the-Fly algorithm. However a
Write hit on a Stale copy triggers a ReqOC command to
memory and a block reload. Also, upon execution in the
processor of a Lock instruction, all Stale blocks become

Invalid (see Figure 5).

Figure 5: Cache state diagram for the Receive Delayed
protocol.

4.3 Send-and-Receive Delayed Protocol

Receive Delayed protocols are effective at reducing
the number of false sharing misses. They work well for
blocks that are read by several processors, and modified by a
small subset of these processors: the modifying processors
experience false sharing transitions on each Write, but the
reading processors do not (between the execution of two
Lock instructions). Usually, however, between two Lock
instructions, processors may read and write different words
of the same block, or even sometimes only write into the
same block. If two Writes to the same block can occur
simultaneously, then they must be for different parts of a
block. Therefore, such Writes can be executed without
acquiring a unique copy. Writes executed on a non-unique
copy must be propagated at the next execution of an Unlock
instruction [15].

We have to keep track of all partial modifications of
a non-owned block copy so that they can be written back to
memory at the next Unlock instruction. Copies of these
modifications must be kept in an Invalidation Send Buffer
(ISB). At most this buffer must have as many entries as there
are block frames in the cache. However, the optimum size of
this buffer is probably much less than that. First of all, if the
buffer is too large, Unlock instructions are very costly
because a large number of memory updates must be
propagated. Second, because of the locality of accesses to
shared blocks, we can expect that accesses to a shared block
by a given processor occur in runs or bursts. Therefore, we
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will observe diminishing returns in the miss rate curves as
the buffer size is increased. The ISB should be a small, fully
associative buffer, capable of containing a few blocks.

Besides being receive delayed, the following protocol
is also send delayed in the sense that ownership is acquired
either on a Write miss or when a modified block is removed
from the ISB. While the block is in the ISB, multiple Writes
can be done locally and other processors can also read and
write the block.

Figure 6: Cache state diagram for the Send-and-
Receive Delayed protocol.

Block states

(a) Cache states.

Similar to the states for the Receive Delayed
protocol. The difference is that a Keeper copy or a Stale copy
may be Modified locally. In these cases, there is a copy of the
modifications to the block in the ISB.

(b) System Directory states.

Same as for the On-the-Fly protocol.

Memory commands

(a) Issued by a memory controller to the caches.

Same as for the Receive Delayed protocol.

(b) Issued by a cache to the memory controller.

Commands ReqO, ReqOC, ReqKC and WB are

Owner  Keeper

Invalid Stale

Ri, Rj, Wj,

Ri, Rj, Wj
 Wi (Ins ISBi),

Ri, Wi

Rem ISBi (ReqO)

(ReqOC)

 Lock

 (Inv)

Rj (UpdM)

 (ReqKC)
 Ri

Rj, Wj,

Rem ISBj

 Wi

Wi (Ins ISBi)

Ri, Rj, Wi, Wj, Lock: same as figure 5.
Rem ISBi: an entry is removed from the

Invalidation Send Buffer.
Ins ISBi: an entry is inserted into the

Invalidation Send Buffer.

Rem ISBi
(ReqU),
Rem ISBj Rem ISBi (ReqU),

Rem ISBj

 Wj (Inv)

needed and trigger the same actions as in the Receive
Delayed protocol. However, a new command must be
introduced to notify the possible Owner or Keepers in case a
Modified Keeper or Stale copy is removed from the ISB or is
replaced in the cache. This new command is called ReqU
(Request Update). Besides a partial update of memory
(based on the words modified in the ISB), Inv signals are sent
to all Fresh copies in the system.

Cache algorithm

For different types of cache accesses, the cache controller
takes the following actions (Figure 6).

•  Read hit: no action is taken.
•  Write hit: if the copy is Owned, no action is taken.

If the cache is a Keeper or if the copy is Stale, then an entry
is allocated to the block in the ISB (unless an entry is already
present); the new values are stored in the buffer. Therefore,
a Write hit is always a local operation.

•  Read miss: a ReqKC command is sent to the
memory controller.

•  Write miss: a ReqOC is sent to the memory
controller.

•  Removing an entry from ISB: the Keepers or the
Owner (if any) must be notified; if the block was Invalid1 or
Stale in the cache then a ReqU request is sent to memory and
the block stays Invalid or Stale in the cache. If the cache was
a Keeper then a ReqO command is sent to the memory
controller (in this case, the part of the local copy that has not
been modified is consistent with memory).

•  Executing a Lock instruction: all Stale blocks
become Invalid right after the successful acquisition of the
Lock.

•  Executing an Unlock instruction: all entries must
be removed from the ISB right before releasing the Lock.

•  Replacement: if the cache is the Owner, then a WB
command is sent to memory. A ReqU command is sent to the
memory if the copy is a Stale or a Keeper copy and it has
been Modified; in this case, the modifications are stored in
the ISB.

4.4 Hardware Implementation

At the system level, the Send-and-Receive Delayed
protocol is very similar to the On-the-Fly protocol. The only
major difference is the ReqU command, which uses controls
needed for the ReqO command. Added complexity is in the
implementations of the Stale state in the cache, of the
Invalidation Send Buffer, and of the partial updates of
memory.

1. Since we allow that modifications of a block may be in the
ISB even if the block is not in cache, a miss in the cache must
first check the ISB.
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Each block frame in the cache requires a Valid bit (V)
and an Ownership bit (O). A Stale bit (S) is also needed to
distinguish between a Stale and a Fresh block. When an
invalidation reaches the cache, the S-bit is set and the V-bit
is reset to mark the block as Stale. When a Stale block is
accessed, the reset V-bit is masked by the S-bit, i.e. if the S-
bit is set then the value of the V-bit is ignored. After the
successful execution of a Lock instruction, all S-bits must be
reset in the cache (at this point all Stale blocks become
Invalid). A simple way to do this is to store the S-bits in a
clearable SRAM chip (for  example,  part  No.  SN
74ACT2154 in [25]).

Figure 7: Block diagram of an ISB

The ISB should contain no more than a few entries
(2, 4 or 8). Each entry contains the block address, one Valid
bit, and a Dirty bit for each word of the block (see Figure 7).
The buffer is accessed associatively with the block address
when a Store is done in the cache. If the copy in cache is a
Keeper or a Stale copy, as indicated by the S and O bits, the
ISB is consulted. If an entry already exists for that block the
word is updated in the buffer and its dirty bit is set.
Otherwise an entry must be allocated in the buffer. It is
important to manage the ISB efficiently to avoid slowing
down the processor on a Write hit. In particular, there should
always be at least one free entry in the ISB.

 When a non-owned block copy updates memory the
block in the ISB (containing both modified and “empty”
words) is sent to the memory controller2. The memory
controller can use the dirty bits to enable/disable the Store of
each word of the block.

2. Alternatively, in order to reduce the traffic, only the modified
bytes could be sent to memory. However this optimization is
probably not cost-effective.
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4.5 Alternate Designs

We propose some refinements which could further
improve the performance of the Send-and-Receive Delayed
protocol.

In the present protocol, when a Keeper copy is
removed from the ISB, the cache gains ownership for the
block, in order to reduce the overhead for private, non-
shared blocks. On the other hand, when a Stale block is
removed from the ISB, all Fresh copies are notified and the
block remains Stale. Besides leaving it Stale, we could
envision two other strategies: invalidating the block, or
acquiring ownership for the block. It may be useful to have
different strategies, depending on when the block is removed
from the ISB.

The ISB must be managed in such a way that Write
hits are never slowed down, and synchronization points are
executed efficiently. We propose that, in normal operation,
one or two free entries be always maintained in the ISB, and
that blocks be removed when the number of free entries falls
below one or two. However, before an Unlock instruction, a
special instruction “Prepare to Synchronize” could be issued
by the compiler to remove all entries in the ISB.

In the delayed protocol, the cache never blocks on a
Write hit. A simple extension is to avoid blocking on Write
misses as well. A Write miss simply fills a word in an entry
of the ISB (such a copy which exists in the ISB but not in the
cache should be considered as Invalid1). The block is only
loaded at the first following Read miss.

5.0 Effect on False Sharing Misses

All simulation results reported in this Section were
derived for infinite cache sizes and for an ISB of size two
blocks (no gain was observed beyond an ISB of size 2
blocks). We only show data miss rate figures. The miss rates
on data for the three protocols can be seen in Tables 2
through 6, for the set of programs analyzed. In the discussion
we focus on block sizes of 16 words (64 bytes), which is the
block size adopted in the SCI (Scalable Coherence Interface)
protocol [12]. It is also a good choice for uniprocessor

 Application

 SOR
 QSORT
 FLOYD
INTERPOLATE

 # of Data
 Accesses
9,829,600
969,631
354,913
17,028

# of Writes

1,637,600
254,280
4,635
8,192

# of Reads

8,192,000
715,351
350,278
8,836

Table 1: Characteristics of the Applications
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caches.

The data access patterns of the four parallel programs
used in our performance studies are summarized in Table 1.
The programs are further described below.

1) SOR: 100 iterations of the Successive Over Relaxation
iterative algorithm to solve Poisson’s equation on a square
domain [28] with single precision (32 bit) floating point
numbers. The grid has size 128x128 (actually 130x130
because of boundary conditions) and is partitioned in four
quadrants. Each quadrant is allocated to one processor.
Partitioning of data is static. The size of one word is 32 bits.
The miss rate due to false sharing is very sensitive to the
actual timing of processor execution, as discussed in Section
2.0. Results are reported for the worst and best cases of false
sharing.

2) QSORT: Quicksort [22] of a 32K file of 32-bit integers.
Results are the average of the results of 10 runs for 10
different random files. Partitioning of the data is dynamic.
The number of processors is 16. The size of one word is 32
bits.

3) FLOYD: Single source shortest path problem using the
Floyd-Warshall algorithm [10]. There is a path and a cost
array. Each graph is a random graph of 128 nodes with
maximum connectivity of 96. Each result is an average over
10 runs of the algorithm on all nodes of 10 different random

Block size (bytes)

 On-the-Fly
 Receive Delayed
 Send-and-Receive Delayed

16

0.69
 0.60
 0.60

32

0.87
 0.78
 0.75

64

0.96
 0.92
 0.86

128

1.00
 0.98
 0.92

8

0.60
 0.54
 0.54

4

0.69
 0.69
 0.69

Table 2: SOR (best case) - miss rates (%)

Block size (bytes)

 On-the-Fly
 Receive Delayed
 Send-and-Receive Delayed

16

0.69
 0.60
 0.60

32

1.03
 0.85
 0.78

64

1.61
 1.17
 0.88

128

2.71
 1.75
 0.92

8

0.60
 0.54
 0.54

4

0.69
 0.69
 0.69

Table 3: SOR (worst case) - miss rates (%)

Block size (bytes)

 On-the-Fly
 Receive Delayed
 Send-and-Receive Delayed

16

 5.75
 5.67
 5.49

32

4.12
 3.86
 3.35

64

4.10
 3.36
 2.36

128

 5.15
 3.56
 1.91

8

 9.89
 9.86
 9.86

4

18.62
 18.62
 18.62

Table 4: QSORT - miss rates (%)

graphs. The two arrays are frequently read but rarely
modified. Data partitioning is done dynamically. The
number of processors is 16. All data are 4 bytes, which is
also the size of a word.

4) INTERPOLATE: Picture interpolation program. Only
one out of every 9 pixels in a picture has initial values. Based
on a linear interpolation the missing pixel values are
computed. The size of the picture after interpolation is
96x96. The picture is divided into 8 rectangles and each
rectangle is assigned to one processor. Partitioning is static.
Data is either write-only or read-only. All data are 8-bit
pixels, and the size of a word is also 8 bits.

Of all these programs FLOYD exhibits the least
number of false sharing transitions. The reason is that the
two arrays are accessed mostly randomly and are read most
of the time. INTERPOLATE exhibits large false sharing
effects. It is not iterative like the other three algorithms.
Processes read the known pixel values, compute each
unknown value and store it. There is no Read/Write sharing
of data, and consequently there is no locking in the whole
program, except at the beginning (to fork the processes) and
at the end (to terminate). There is some Read sharing, but all
the coherence activity is due to false sharing transitions
caused by Stores. This type of sharing is very frequent. It
occurs for example in a Doall loop where successive
iterations of a loop compute the components of a vector or an
array, and are allocated to different processors. A classical
example is the Doall loop computing the product of two
matrices A and B and storing the result in a matrix C.

The results above show that delayed consistency is
effective at reducing the number of misses when the effect of
false sharing transitions is large. FLOYD has very few false
sharing transitions and therefore it shows little gain. The best
cases of SOR have few false sharing transitions, and most of
the false sharing transitions occur across barrier

Block size (bytes)

 On-the-Fly
 Receive Delayed
 Send-and-Receive Delayed

16

12.22
 12.06
 12.05

32

 9.46
 9.22
 9.20

64

9.47
 8.98
 8.96

128

 10.05
 9.27
 9.23

8

17.91
 17.77
 17.76

4

28.38
 28.38
 28.38

Table 5: FLOYD - miss rates (%)

Block size (bytes)

 On-the-Fly
 Receive Delayed
 Send-and-Receive Delayed

16

32.28
 7.14
 7.14

32

52.20
 5.64
 5.64

64

53.89
 5.07
 5.07

128

53.61
 3.38
 3.38

8

10.15
 10.15
 10.15

4

16.16
 16.16
 16.16

Table 6: INTERPOLATE - miss rates (%)
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synchronizations, so that the Stale bit and the ISB are not very
effective (a reduction of misses of only 10% is observed for
a block size of 64 bytes); for the worst case of SOR, delaying
consistency is extremely effective in the case of a block size
of 64 bytes, because false sharing effects are intense and occur
mostly between barrier synchronizations (within the same
sweep). The gains in QSORT (P=16) only occur for block
sizes larger than 16 bytes, because the false sharing effects
are very small for smaller blocks. For a block size of 64 bytes
(file size of 32K), the reduction in the number of misses
approaches 42% for a Send-and-Receive Delayed protocol.
Finally, as expected, INTERPOLATION benefits the most
from delayed consistency (90% reduction in the number of
misses for block size 64), because all misses (except initial
loading misses) are due to false sharing and because the
algorithm does not require any synchronization during most
of its execution.

6.0 Other Approaches

6.1 False Sharing

There have been several other proposed solutions to
the problem of false sharing and the relatively low spatial
locality of shared data accesses [16][26]. The first one
consists of not caching shared writable data. This solution
usually requires a T.L.B. (Translation Lookaside Buffer) to
discriminate dynamically between cacheable and non-
cacheable blocks. The problem with this solution is that
entire data structures must be deemed non-cacheable if any
item in the structure is shared and can be modified. Another
proposition would be to use two data caches: one for shared
data, and one for private data. These two caches could have
different block sizes. Theoretically, caches could have two
block sizes: one for shared data and one for private data, but
the complexity of the implementation of such proposal has
never been investigated. Bitar and Despain [5] have
proposed to allocate one cache block per shared data item.
This scheme would probably have to rely on the compiler to
expand the shared data structure with dummy items. This
will result in significant waste of memory and cache.

The compiler and programmer can try to reduce false
sharing through wise data placements. For example, in the
S.O.R. algorithm above the compiler could try to allocate an
integer number of blocks per row; this would remove the
problem for blocks such as block 2 in Figure 2. However, for
blocks such as block 1, it will be difficult to achieve this in
general, without wasting a lot of cache space or complicating
drastically the addressing to contiguous array components.
Real applications, while exhibiting the type of sharing present
in the S.O.R. Poisson solver, are seldom as simple [28].
Usually, the boundary calculations are complex, and the
region is not square but is irregularly shaped and has internal
cavities; sometimes the grid mesh size is different for different
areas of the grid. Compilers may have problems dealing with
false sharing in those cases, even for blocks such as block 2.

Reduction of false sharing by the compiler or the programmer
is also difficult in the case of dynamic data partitioning, such
as in quicksort. In this case, the user would have to take into
account the block size in the computation of the pivot, and
this will result in complex algorithms, optimized at the source
code level for one machine but not another. Some simple
compiling techniques, which in some cases can reduce the
effect of false sharing, are proposed in [26] and evaluations
based on 16 and 32 processor systems look encouraging.

6.2 Latency Tolerance

Other cache mechanisms to tolerate latencies can be
used besides delayed consistency. On such approach is non-
blocking or lockup-free caches [13][21]. When a miss occurs
in a non-blocking cache, the cache does not block the
processor and services the miss concurrently with processor
accesses. Several misses can be pending. Non-blocking
caches are especially effective for second-level shared caches,
for superscalar processors [23], and for programs in which
in-cache prefetching can be done effectively[18]. Penalties
due to Stores in systems with write-through caches can also
be reduced effectively with a Store buffer between the
processor and the cache.

Finally, the DASH multiprocessor implements a form
of weak ordering protocol based on Release Consistency [15]
and attempts to overlap Stores with computation in a system
with write-through caches, mostly by using a Store buffer.
However, the second level cache locks out the processor when
a Store requires ownership. The DASH protocol is neither
send delayed nor receive delayed, in the sense that we mean
it here: the cache locks out the processor on a coherence
update and there is no provision for delaying the reception of
invalidations. In the DASH multiprocessor as long as the first
level cache [15] hits on Read accesses while the second level
cache gains ownership for a previous Store, consistency is in
fact delayed. Some of the benefits of delayed consistency may
be obtained through this two-level organization. Since the
DASH protocol relies mostly on a Store buffer associated
with the processor, the propagation of invalidations are time-
critical and therefore results in complex deadlock-prone
sequences of transfers between memory and caches.

7.0 Conclusion

In this paper, we have introduced two write-
invalidate delayed consistency protocols, built as extensions
of an existing protocol. Delays are obtained through one
buffer and the addition of the Stale bit in the cache state.
Implementation of an ISB allows the overlapping of cache
activity and sending of invalidations.

Delayed consistency also reduces the number of false
sharing transitions. This is important in systems supporting
efficiently both parallel and single thread processes.
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Significant reductions in the miss rate on data can be
obtained with the addition of a stale bit, and further reduction
was observed by adding a small ISB. These reductions are
obtained with no assistance from the programmer or the
compiler, which makes delayed consistency particularly
useful for general-purpose multiprocessors. The only
restriction is that parallel programs must access shared-
writable data in critical or semi-critical sections.
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